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A B S T R A C T   

Missed appointments are estimated to cost the UK National Health Service (NHS) approximately £1 billion 
annually. Research that leads to a fuller understanding of the types of factors influencing spatial and temporal 
patterns of these so-called “Did-Not-Attends” (DNAs) is therefore timely. This research articulates the results of a 
study that uses machine learning approaches to investigate whether these factors are consistent across a range of 
medical specialities. A predictive model was used to determine the risk-increasing and risk-mitigating factors 
associated with missing appointments, which were then used to assign a risk score to patients on an appointment- 
by-appointment basis for each speciality. Results show that the best predictors of DNAs include the patient’s age, 
appointment history, and the deprivation rank of their area of residence. Findings have been analysed at both a 
geographical and medical speciality level, and the factors associated with DNAs have been shown to differ in 
terms of both importance and association. This research has demonstrated how machine learning techniques 
have real value in informing future intervention policies related to DNAs that can help reduce the burden on the 
NHS and improve patient care and well-being.   

1. Introduction 

Previous research of trends in missed outpatient appointments has 
suggested that ‘Did-Not-Attends’ (DNAs) are a significant problem 
internationally, with evidence of DNA rates varying between specialities 
and locations with some specialities (e.g. psychiatry related appoint-
ments) having higher DNA rates than average (Lehmann et al., 2007; 
Mohamed et al., 2016). Previous studies have drawn attention to the 
economic consequences of no-shows (Kheirkhah et al., 2016). In Wales 
alone, for example, there were 1.5 million missed appointments in the 
five years between 2015 and 2019 with an estimated cost to the National 
Health Service (NHS) in Wales of approximately £240 million (BBC 
News, 2020). Hidden within national averages are regional variations 
between the seven Local Health Boards (LHBs) in Wales (http://www. 
wales.nhs.uk/nhswalesaboutus/structure). Missed appointments which 
averaged 7.7% across Wales for 2018/19, were closer to 10% for those 
LHBs serving the areas of highest population in the South Wales valleys 
and the capital city of Cardiff. The direct and indirect consequences of 
such missed appointments are significant. These include the waste of 
staff time and resources (each missed appointment costing the NHS 
approximately £120 (NHS England, 2018)), and potential health 

impacts caused by the delay in treatment and longer waiting lists (which 
themselves produce a chain effect because longer waits for appoint-
ments have been linked to a higher rate of non-attendance (NHS En-
gland, 2018)). A knock-on effect is the increased demand in other sectors 
of the health service, including accident and emergency or out-of-hours 
services. 

While the factors associated with outpatient DNAs have been 
examined in previous research, most studies to date have been con-
cerned with examining the factors that affect missed appointments for 
specific specialities or within individual clinic/hospital settings. There 
are relatively very few examples of research that has looked at variations 
in non-attendance across specialities (Frankel et al., 1989; McCarthy 
et al., 2000). It follows that more research is needed to examine those 
factors affecting DNA rates for a wider variety of medical specialities 
that investigates the importance of both contextual (area-level) and 
compositional (patient-specific) influences. The main aims of this paper 
are to draw on a national database of non-attendance records to identify 
the types of factors that are important for predicting DNAs using ma-
chine learning (ML) techniques and to highlight trends in missing ap-
pointments across medical specialities. This study is part of a 
longer-term project which aims to implement an automated reminder 
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system that targets patients at risk of not attending their outpatient 
appointment in such a way that frees up staff time in pursuing follow-up 
tasks. 

The findings presented here could also be seen as part of a wider 
contribution to NHS plans which aim to expand the use of digital tech-
nology by developing new systems to reduce the workload on staff and 
improve patient outcomes (NHS England, 2018). Systems such as 
‘DrDoctor’ which have been developed in the UK have been shown to 
have lowered DNA rates by almost a third in some hospitals. This has 
been achieved by providing patients with routes to hospitals and the 
ability to manage upcoming appointments and by allowing NHS staff to 
send custom notifications, rescheduling appointments and setting 
booking confirmations (NHS England, 2018). This research contributes 
to such systems by providing a DNA risk score for each appointment 
aiding those staff charged with sending reminders where they are most 
needed by the most appropriate means. 

The structure of the rest of this paper is as follows: in Section two, the 
findings from previous literature on the types of factors associated with 
non-attendance are summarised in order to identify current gaps in 
knowledge and to provide a wider rationale for this research. Section 
three presents the data and methods used within this research and draws 
attention to the potential for machine learning tools that go beyond the 
use of traditional approaches such as those based on logistic regression 
models to address these types of health applications. The findings from 
using such tools on a dataset extracted from a national database of 
outpatient non-attendances are presented in Section four. In the 
remaining parts of the paper, the policy relevance of this research is re- 
iterated in relation to the potential for such tools to add to the evidence 
base concerning patterns on ‘no-shows’ and help inform policies aimed 
at reducing the likelihood of non-attendance across medical specialities. 

2. Literature review 

2.1. Review of factors affecting non-attendance 

Table 1 provides a summary of previous literature concerned with 
examining factors associated with trends in DNA rates. Dantas et al. 
(2018) provide a systematic literature review of the types of patient 
characteristics that have been associated with no show appointments for 
a range of medical specialities. In summary, whilst there are differences 
in findings between studies, partly arising from variations in the nature 
of the methodological approach adopted, the majority have drawn 
attention to the importance of factors such as the age and socioeconomic 
status of patients as characteristics associated with missed appointments 
(Campbell et al., 1991; Catz et al., 1999; Kruse et al., 2002; Lehmann 
et al., 2007). History of illness, presenting complaint, severity of illness 
and comorbidities have also all been shown to affect patient attendance 
(Carpenter et al., 1981; Catz et al., 1999; Chen, 1991; Frankel et al., 
1989; Nel, 2014; Nicholson, 1994; Sparr et al., 1993; Stone et al., 1999). 
However, there is less agreement regarding the importance of factors 
such as educational level, race, or the distance from the patient’s home 
to the clinic. Gender, for example, was found to be a factor in some 
studies (Junod Perron et al., 2010; Stubbs et al., 2012) but not others 
(Bush et al., 2014; Catz et al., 1999; Lehmann et al., 2007). Similar re-
sults can be found for variables such as the day of the week, season, time 
of day, new or follow-up appointment, employment status, and others. 
This could suggest that localised factors are potentially involved and/or 
the specialities themselves are affected by different factors. Previous 
research in the NHS in the UK seems to confirm both possibilities and 
suggests that “local systems are needed to address local problems” 
(Sharp and Hamilton, 2001, p.1081). Other meta-analyses have also 
found inconsistencies in results (Chen, 1991; Nicholson, 1994). 

An interesting finding is that missed appointments are dispropor-
tionately distributed among patients, with a small number of patients 
accounting for a large percentage, or even all, of the total number of 
missed appointments (Norris et al., 2014). One study, for example, 

Table 1 
Previous Studies of factors influencing rates of missed appointments.  

Author(s)- 
Year 

Medical 
Setting/ 
country 

Methods Influencing factors 

Campbell 
et al. 
(1991) 

Psychiatry Discriminant 
function analysis 

Age, attendance history, 
mental illness history, 
rural/urban, routine 
appointment, distance, 
source of referral, staff 
type 

Catz et al. 
(1999) 

HIV (USA) t-tests, correlation 
matrix, multiple 
regression, 
ANOVA 

Age, minority status, 
religiosity, severity of 
disease, lower perceived 
social support, 
hopelessness, rural/urban 

Kruse et al. 
(2002) 

Serious mental 
illness (USA) 

Pearson 
correlation, 
logistic regression 

Age, minority status, 
lower perceived social 
support, having health 
insurance, not taking 
medicine 

Sparr et al. 
(1993) 

Psychiatry 
(USA) 

Qualitative, Initial appointment, 
PTSD, history of substance 
abuse, major depression, 
intensity of treatment, 
qualitative: forgetting, 
oversleeping, getting the 
date wrong 

Carpenter 
et al. 
(1983) 

Psychiatry, 
first 
appointment 
(USA) 

Chi square, follow- 
up calls to ask why 

Age, previous psychiatric 
treatment, source of 
referral, chief complaint, 
and number of days they 
waited for an appointment 

Nicholson 
(1994) 

Mental Health, 
(Canada) 

Meta review Age, waiting time, chief 
complaints, history of 
mental health contact, 
referral source, anxiety 
about outcome, 
appointment no longer 
being needed, 

Chen 
(1991) 

Mental Health 
(USA) 

Meta review Age, waiting time, 
socioeconomic status/ 
class, referral source, 
education level, history of 
hospitalisation, clinical 
improvement during 
hospitalisation, length of 
stay, therapist continuity, 
days between discharge 
from hospital and 
appointment, denial of 
illness, perceived need of 
medication, high 
hopelessness-helplessness, 
history of substance 
abuse, distance to clinic, 
divorcees, minority status 

Sharp and 
Hamilton 
(2001)  

Multivariable 
analysis; review 

Sex, age, waiting time, 
deprivation, car 
ownership, phone 
ownership, 
unemployment; self- 
reported: forgetting, 
family or work 
commitments, longer at- 
the-door waiting times 
due to overbooking 

Hamilton 
and 
Gourley 
(2002) 

Antenatal care 
(UK) 

Face-to-face 
surveys (patients 
and professionals) 

Transport related (parking 
space, late buses, 
difficulties traveling with 
children, congestion, no 
bus stop close enough), 
too long a wait, admin. 
errors, childcare 
responsibilities, language 
barrier, low income 

(continued on next page) 
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found that all the missed appointments in their sample were caused by 
only 19.4% of patients (Sparr et al., 1993). A history of missed ap-
pointments for the patient is a factor in future non-attendance (Campbell 
et al., 1991; Stone et al., 1999). A more recent study found that “less 
than 10% of patients who failed to attend twice, turned up for the third 
appointment” (Mohamed et al., 2016, p.3). Deprivation may also be a 
factor with some suggestions that nonattendance at NHS outpatient 
clinics is more common in deprived populations (Sharp and Hamilton, 
2001). 

One potential drawback in those studies conducted to date concerns 
the variations in the number of appointments and participants consid-
ered, with sample sizes varying from a few dozen to tens of thousands 
(Bush et al., 2014). Another limitation relates to the focus on individual 
specialities or institutions which limits the transferability of findings to 
other specialities or contexts. Most use data from a single clinic, but 
others involve a wider variety of settings; such as the study by Krishna 
and Amarjothi (2012) that includes 114 clinics drawing on a cohort that 
consists of 843 patients in mental health outpatient clinics. Furthermore, 
previous research has focused almost exclusively on a select few types of 
clinics, most commonly mental health, HIV, cancer, and paediatrics. To 
address such concerns, this paper builds on previous findings by drawing 
on a more extensive database of patients across a wider range of speci-
alities to consider the types of factors associated with trends in DNA 
rates. 

The approaches used within previous studies also vary but have 
tended to be based on what could be termed ‘traditional statistical 
methods’ (such as t-tests, correlation analysis, logistic regression, chi- 
squared, analysis of variance, Markovian models and others). These 
methods, while powerful and commonly used, may not be ideal for an 
in-depth analysis of a dataset numbering hundreds of thousands of re-
cords and more than 100 variables. With so many variables, complex 
non-linear interrelationships arise, which are both difficult to find and 
explain using classical analysis. The large number of nominal variables 
that are part of the dataset increase the complexity of both under-
standing the data and the predictive task in hand. For these reasons, our 
study promotes the use of machine learning approaches to investigate 
the causes of DNAs. In the next section, we place the use of such tech-
niques in context by briefly describing how such tools have been used in 
health studies to date. 

2.2. Overview of machine learning use in healthcare 

The use of machine learning techniques has divided opinion among 
both clinicians and researchers due to perceived issues such as non- 
interpretability, security concerns and susceptibility to directed at-
tacks (Mozaffari-Kermani et al., 2015). Despite these misgivings, ma-
chine learning is increasingly being used in a range of health 
applications (see, for example, Wiemken and Kelley, 2020). In medical 
imaging, for example, deep learning ML techniques are increasingly 
used for automated diagnosis thanks to “excellent accuracy in the 
interpretation and identification of patterns of disease in medical im-
aging” and lower costs for the patient (dos Santos and Carvalho, 2015, p. 
15). Text mining is also being used for transcribing handwritten patient 
files into an electronic format, thus improving the use of electronic 
health records (Wang et al., 2012). The recent ‘Artificial Intelligence in 
Healthcare’ report commissioned by NHS Digital presents a cautious, but 
optimistic view on the continued development of ML in healthcare 
suggesting that “while AI in healthcare promises great benefits to 

Table 1 (continued ) 

Author(s)- 
Year 

Medical 
Setting/ 
country 

Methods Influencing factors 

Bush et al. 
(2014) 

Paediatric 
Urology (USA) 

Chi-squared, 
ANOVA, 
multivariate 
logistic regression 

Having government 
insurance, staff type, 
initial appointment, 
waiting time, clinic type, 

Lehmann 
et al. 
(2007) 

General 
medicine 
(Switzerland) 

Chi-squared 
univariate 
analysis, Spearman 
rank-order 
correlations 

Age, minority status, 
waiting time, date of birth 
earlier in the year, non- 
Europeans, common 
language with physician, 
follow-up appointment 

Coodin 
et al. 
(2004) 

Severe mental 
illness (USA) 

Chi-square, 
independent 
groups t-test, 
Bonferroni 
correction 

Age, drug use history, low 
level of community 
functioning 

Stone et al. 
(1999) 

Plastic surgery 
(UK) 

Doctor 
questionnaire, 
patient 
questionnaire, chi- 
square 

Appointment history, new 
or follow-up, hand 
trauma, excision of benign 
skin lesions, chronic 
disorders with little 
change, time since surgery 
greater than three months 
(after one missed 
appointment); patient 
self-reported: forgot, 
work-related, illness, lack 
of transport, poor 
weather, failure of being 
informed of appointment, 
appointment being 
cancelled 

McCarthy 
et al. 
(2000) 

Multi- 
speciality (UK) 

Patient 
questionnaire, 
Pearson 
correlation, 

Patient self-reported: 
being unable to 
attend due to illness 
or work-related 
reasons, and 
transport, being 
unwilling to attend 
due to long expected 
waiting time or 
improved health, 
waiting time, 
previous negative 
experience and fear, 
not receiving a clinic 
appointment,  

Frankel 
et al. 
(1989) 

Multi- 
speciality 

Patient 
questionnaire 

Short notice of 
appointment, 
seriousness of 
condition, age, sex 
(insignificant), 
relationship status, 
retiree status, 
difficulty attending 
(mainly due to 
work), not having 
enough information 
about the 
appointment, being 
on holiday, 
treatment 
unnecessary, illness, 
appointment being 
changed, history of 
non-attendance  

Chua and 
Chow 
(2019) 

Multi- 
speciality 

Multiple logistic 
regression 

age, race, 
nationality, 
speciality, 
appointment lead 
time, appointment 
month, appointment 
day of the week, 
referral source, 
previous visit type   

Table 1 (continued ) 

Author(s)- 
Year 

Medical 
Setting/ 
country 

Methods Influencing factors 

and previous visit 
status  
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patients, it equally presents risks to patient safety, health equity and 
data security” (Academy of Royal Medical Colleges, 2019, p. 6). 

Decision tree-based algorithms have a long history of use in health-
care (Koh and Tan, 2005), probably because they are easy to understand, 
are easily explainable with transparent decision making, and they are an 
established and accepted technology (Loh, 2014). Some examples 
include those studies where decision trees were used in drug discovery 
and outperformed neural networks and logistic regression (Muhammad 
et al., 2008; Obenshain, 2004). Decision tree-based methods have also 
been used in health geography research, such as a recent study of West 
Nile Virus where decision trees were used to identify complex re-
lationships between data sets (Young et al., 2013). Their model’s pre-
dictive ability was geographically inconsistent, possibly owing to 
unmodelled factors in the areas of poor prediction. Gradient boosted tree 
methods (defined in section 2.3) have gained popularity in healthcare 
due to their interpretability and increased performance compared to 
decision trees (Che et al., 2015). However, to our knowledge, few studies 
in health geography have, to date, used LightGBM, a type of gradient 
boosted model, utilised in this study. This is in stark contrast to its 
application in other disciplines/study areas such as bioinformatics 
(Chen et al., 2019), malware detection (Wang and Liu, 2020), acoustic 
scene classification (Stowell et al., 2015), cryptocurrency price fore-
casting (Sun et al., 2020) and others. LightGBM has several advantages 
over other techniques, including performance, interpretability, 
non-linearity, robustness to nominal and ordinal data, and ability to 
handle a large amount of data. 

There has been some ML research into the causes of outpatient 
appointment DNAs; studies in Spain and the UK, for example, have 
found gradient boosting to be the best predictive model, outperforming 
both classical methods (such as logistic regression) and other ML tech-
niques (Elvira et al., 2018; Nelson et al., 2019). The gradient boosting 
methods used were H2O.ai and XGBoost, respectively. Dashtban and Li 
(2019) also found ML methods to be superior to logistic regression, 
although their method of choice was a deep neural network. However, 
such studies have tended not to include sociodemographic data; for 
example, Nelson et al. (2019) did not include any age, sex, or employ-
ment variables in their study. In addition, unlike the approach taken in 
this study, differences between specialities were not sought or reported. 

2.3. Review of machine learning methods used in this study 

For the analysis described in this paper, Python 3 was used with data 
manipulation and machine learning libraries. The predictive algorithm 
chosen was Microsoft’s LightGBM, drawing on consistently good results 
in a variety of research studies and competitions especially in binary 
classification tasks (Anghel et al., 2018; Ma et al., 2018). This is a 
‘gradient boosting decision tree’ method introduced in 2017 (Ke et al., 
2017). Linear models were also considered, but ultimately rejected 
because, as it is often the case with such large data, when “there is a 
highly non-linear and complex relationship between the features and the 
response,. . . Decision trees may outperform classical approaches” 
(James et al., 2013, p. 314). Decision trees on their own, however, are 
often prone to overfitting and do not generalise well. Due to this and 
other shortcomings, they are rarely used individually (Bramer, 2007). 
Since our dataset features dozens of variables, resistance to overfitting 
was a major consideration, providing another reason for choosing a 
gradient boosting algorithm. LightGBM specifically compares favour-
ably to other gradient boosting algorithms, such as XGBoost (Anghel 
et al., 2018; Ke et al., 2017; Ma et al., 2018). 

The idea of boosting (using multiple weak models to approximate a 
robust model) was first introduced in the eighties (Kearns and Valiant, 
1989) and confirmed in the early nineties in a landmark paper for ma-
chine learning and statistics (Schapire, 1990). Gradient boosting, 
hypothesised by Breiman and first constructed by Friedman, builds upon 
the idea of boosting, by introducing adaptive reweighing of the pa-
rameters (Breiman, 1998; Friedman, 1999a, 1999b). Bagging (bootstrap 

aggregation) was also used in conjunction with deep (unpruned) trees, 
to reduce the variance, leading to better generalisation. Through 
bagging, each decision tree is trained on a subset of the dataset, which 
leads to higher individual variance but lower bias (James et al., 2013). 
In summary, this overview points to some successful applications of 
machine learning within healthcare research and more specifically 
draws attention to the potential use of LightGBM for this study. 

3. Data and methods 

3.1. Data sources 

The principal source of the data for this research is the NHS Wales 
Informatics Service (NWIS) National Outpatient Appointment Database. 
For this analysis, every patient present within the data between January 
1, 2018 and December 31, 2018 was selected. To account for repeated 
measures in the data, only the latest appointment per patient within the 
time-period was kept. This timeframe was selected because it is the most 
recently available data and includes every outpatient appointment 
scheduled in Wales during the selected timeframe, for every available 
medical speciality. As such, this data is not a sample, but the entire 
population. The data includes information on 1,011,897 unique in-
dividuals, 561,393 females and 450,504 males. The mean age is 49 years 
old while the median is 53 years old, providing evidence of negative 
skewness. The DNA rate averaged by individual is 8.6%, although this 
greatly varies by Health Board and speciality. 

Deprivation measures have also been included because they have 
previously been found to have an impact on non-attendance rates (Sharp 
and Hamilton, 2001). The Welsh Index of Deprivation (WIMD) Rank (for 
2014) and the Townsend Index (for 2011) are both measures of depri-
vation, but they are calculated differently. WIMD is both an area-based 
measure and a measure of relative deprivation, since it ranks all Lower 
Layer Super Output Areas (LSOAs, approx. 1500 people) based on eight 
deprivation domains: income, employment, health, education, access to 
services, community safety, physical environment and housing. These 
domains are themselves calculated from combining underlying variables 
(Statistics For Wales, 2014). The Townsend Index, on the other hand, 
uses four census variables to calculate a score for each area (Output Area 
(OA, approx. 300) or LSOA) namely unemployment, non-car ownership, 
non-home ownership, and overcrowding (Townsend, 1988; Yousaf and 
Bonsall, 2017). More deprived areas have higher Townsend scores and 
are ranked higher on the WIMD, with respect to their method of 
measuring deprivation. Both WIMD and Townsend were included in the 
dataset in order to compare their use as contextual variables in an 
analysis of DNA rates. Both the WIMD rank and Townsend Index were 
joined to each patient record by LSOA code. 

3.2. Data pre-processing 

As expected for such a dataset, a degree of pre-processing was 
required. Some records had invalid or impossible values; these were 
removed entirely. There were approximately 3.2% of records where the 
waiting time (measured in days between the date of referral and date of 
appointment) was zero or negative. Of these, the majority were same- 
day appointments, which are not relevant to this research, for two rea-
sons: firstly, the motives for non-attendance are likely to be different to 
the usual (forgetting, no longer needing the appointment, not consid-
ering it a priority, etc.) and secondly, reminders are unlikely to be sent in 
time in these cases. As such, all these records were also removed. 
Another 1% of records were removed due to missing the referral date 
entirely. As a result of these pre-processing steps, the final count of data 
numbered 976,562 records. 

Where possible, new variables were derived from existing data; an 
example being ‘appointment history scores’ which were calculated 
individually using each patient’s history of attendance. This measure of 
attendance is designed to give more recent appointments a higher 
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impact, by including a time factor in the calculation of the formula 
which scores patients on their previous attendance (detailed in Equation 
(1)). The Charlson Comorbidity Index was also calculated for each pa-
tient; this is a “weighted index that takes into account the number and 
the seriousness of comorbid disease” (Charlson et al., 1987, p. 373). 
Other computed variables include road distance/drive time to hospital 
based on the patient’s and hospital’s postcodes, attendance outcome of 
previous appointment (attended, non-attended, cancellation), hospital 
attendance rates (by type), days since last appointment, days since last 
DNA, and ‘waiting time’ calculated as the difference between the 
appointment and referral dates. 

The appointment history used in this research is unlike other similar 
measures, both because it considers all three attendance outcomes and 
includes an adaptive weighting based on date. This is an original 
equation, obtained through experimentation and based on the principle 
of recent appointment attendance having a higher impact on future 
attendance than older appointment attendance. Each of the three factors 
(attendances, DNAs, cancellations) were computed individually and 
stored as separate variables. The equation used to calculate each ap-
pointment’s score can be seen in Equation (1). It is calculated for all 
appointments, five years prior to each appointment in the dataset. To 
calculate all the appointment scores, over thirty million records were 
queried. 

Ascore =
∑ 1A

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(Currentdate − Pastdate)

√ (1)  

3.3. Exploratory data analysis 

Initial exploratory analysis highlighted that some numerical vari-
ables were highly correlated, such as the ‘percentage of the population 
with long term health problems and disabilities’ (LTHPD) and ‘health 
level’ (self-reported). Due to correlations with other variables being 
higher for LTHPD (thus lower overall information gain), that variable 
was removed from the dataset. Similarly, date-related variables such as 

‘day of the year’, ‘week of the year’ and ‘month of the year’ were highly 
correlated; thus, all but the day of the year were removed. Priority type 
(routine or urgent) was also correlated with attendance type (new or 
follow-up). Some variables had a high percentage of missing values; 
‘days since last DNA’ had 56.7% of its values missing, because no DNAs 
were found in the lookback period of five years. All those appointments 
had a DNA score of 0. Driving distance also could not be computed for 
22% of appointments; however, it is present for a large proportion of the 
data. The majority of patients had a Charlson Comorbidity index of 0, 
indicating no comorbidities; however, it still proved to be an important 
variable, especially for some specialities. 

The distribution of the Townsend scores was compared to the dis-
tributions of DNA rates. For visualisation, we have chosen to include 
local-level analysis for one Local Health Board; the Cwm Taf Morgannwg 
University Health Board (CTM) area in South Wales which has the 
highest DNA rate in Wales. CTM also includes a diverse spread of so-
cioeconomic circumstances, from some of the most deprived LSOAs to 
some of most affluent in Wales. As can be seen in Fig. 1, there is a large 
overlap between areas with high Townsend scores (A) and high DNA 
rates in general (B); however, the opposite can be seen as well, and DNAs 
for some specialities show an inverse relationship with Townsend scores, 
(such as ‘Old Age Psychiatry’, Fig. 1(D)). Of the 1,015,165 patients, 
175,247 (17%) had at least one non-attendance within the timeframe, 
adding up to 248,905 non-attendances in total. Based on this, while most 
patients attend all their appointments, patients who missed at least one 
appointment within this timeframe, missed 1.42 appointments on 
average. This figure varies by individual LHB within the region. In Cwm 
Taf Morgannwg University Health Board, this rate rises to 1.54, sug-
gesting a larger repeat non-attendance problem whereas Powys Teach-
ing LHB had the lowest rate of 1.28. This finding concurs with the work 
of others that suggests that missed appointments lead to more missed 
appointments (Campbell et al., 1991; Stone et al., 1999). 

Fig. 1. Relationship between the Townsend Index and DNA rates by speciality for CTM.  
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3.4. Analytical methods 

3.4.1. Logistic regression 
Logistic regression is one of the simplest and most used methods for 

two-class classification. It is easy to implement and often used, as is the 
case here, as a baseline for a binary classification problem. Logistic 
regression was performed using the scikit-learn API in Python. The nu-
merical data was min-max normalised by subtracting the minimum 
value and dividing by the range for each numeric column. The result is 
that each numerical factor is rescaled to the range [0,1]. 
[0, 1]Normalization is necessary for logistic regression to perform well 
but comes with a disadvantage in interpretability of the model which is 
discussed in the Results section. Scikit-learn uses L2 penalty by default 
with the ‘lbfgs’ solver, however using ‘saga’ solver, an elastic net penalty 
(L1+L2) was applied (Zou and Hastie, 2005). 

A significant disadvantage of logistic regression is that it is greatly 
affected by colinear variables, being a linear method. Another disad-
vantage is that categorical variables must be either one-hot-encoded, a 
process by which categorical variables of k distinct values are split into 
k-1 binary variables (resulting in increased complexity) or factorised, 
which means they are treated as if they were linear variables. Logistic 
regression also does not handle null values, leading to information loss. 
To address the limitation of logistic regression and drawing on literature 
that shows the potential for applying machine learning techniques in 
health geography, the next section outlines the use of LightGBM in the 
analysis of DNAs. 

3.4.2. LightGBM 
The machine learning method used in this study is the gradient 

boosted trees method ‘LightGBM’. Being a tree-based method, collinear 
variables do not have a significant effect on the results. ‘Gradient 
boosted’ means that the predictive model is formed iteratively from an 
ensemble of weaker models (in this case, decision trees), optimised by a 
gradient descent function. Boosting is applied in the following way: after 
each weak model is trained, their performance is evaluated, with inputs 
which previous models failed to correctly classify being weighed higher 
and successfully predicted inputs being weighted lower. This process 
changes the sample distribution at each iteration by focusing subsequent 
models on misclassified data. Finally, the method for making predictions 
using boosting in classification is to have each weak model assign a class, 
and their choices are aggregated in some form (majority class, average 
class, weighted average, etc.). The weighted average is commonly used, 
with weaker models being typically assigned a lower weight. 

Gradient boosting works by successively fitting each model to the 
gradient of the previous model’s loss function, with the aim of max-
imising the error reduction at each step. Effectively, this is a type of 
functional gradient descent. Importantly, it does not change the sample 
distribution, unlike traditional boosting, but still emphasises learning 
from mistakes. Thus, LightGBM trains decision trees iteratively, one tree 
at a time, with each tree taking some of the previous output into 
account. 

3.4.3. Implementation 
Machine learning models require splitting the data into training and 

testing sets, to avoid data leakage. The portion of the data used for 
setting the parameters of a model (‘training the model’) is called the 
training set, and usually contains 80% of the data, while the other 20% is 
used as a hold-out set for testing. The hold-out set contains data unseen 
by the model, and it is used in order to ensure that the results are 
reproducible. A validation set was also utilised, serving as an interme-
diary between the training and test sets. When the dataset was split into 
training, testing and validation sets, a multi-stage sampling process 
formed of stratified splits was performed based on DNA rates and patient 
IDs, to ensure that the datasets are representative and that there is no 
information leakage. Due to the large amount of data available, a model 
was trained on 80% of records, while validation was performed on 10% 

of records. Finally, testing was carried out on a hold-out set of 10% of 
records. A model with the same parameters was then trained and tested 
on subsets of the data containing each speciality, and results were 
compared to the original. 

Models were fine-tuned using a dual approach of random search, to 
find promising values or ranges for hyperparameters, followed by grid 
search with cross-validation, to home in on the best performing hyper-
parameters. Parameter ranges for both logistic regression and LightGBM 
can be found in Table 2. The metrics used to score the model’s perfor-
mance were precision (PPV), sensitivity and F1 score (harmonic mean of 
precision and sensitivity). Due to the class imbalance present in the data, 
attendances outnumber DNAs at a ratio of 10:1; two often-used metrics, 
accuracy and ROC-AUC, were not used for model selection because they 
are not appropriate in an imbalanced class situation (Davis and Goa-
drich, 2006; Saito and Rehmsmeier, 2015). The model outputs the 
probabilities of each appointment belonging to one of the two classes 
(attendance or non-attendance). While by default, most models set 50% 
as the threshold for separating the predictions into classes, in imbal-
anced datasets this is often not the correct choice (Saito and 
Rehmsmeier, 2015). The precision-sensitivity plot was used to deter-
mine the threshold that maximises the F1 score. 

While the results are discussed for a scoring threshold that maximises 
the resulting F1 score, this threshold can be modified to favour either 
precision or sensitivity, depending on which metric is deemed more 
important. A cost-benefit analysis can reveal what is costlier: mis-
labelling a missed appointment or an attended one. The SHAP (SHapley 
Additive exPlanations) library was used to calculate the relative 
importance of each variable. Each variable is assigned a ‘shap value’ 
which equates to the average change in magnitude of the model’s output 
when that variable is hidden, or in other words, the change in log odds. 
SHAP is a unified model, combining some previously existing methods 
in a novel way, using game theory principles. It is more accurate and 
consistent than traditional log loss or Gini Impurity (Lundberg and Lee, 
2017). Dot plots, violin plots and individual importance plots drawn 
using SHAP are analysed in Section 4. Violin plots provide much more 
information than traditional box plots as they can highlight both the 
distribution of each variable and the importance of it within the model, 
respective to its distribution. These plots will be compared to visually 
show the differences between the use of logistic regression and 
LightGBM in our analysis. 

4. Results 

4.1. Using classical methods (logistic regression) 

The results of logistic regression were poor, both in terms of metrics 
and information gain. On the test set, an F1 score of 0.31 was achieved. 

Table 2 
Parameter tuning for logistic regression and LightGBM.  

Logistic regression LightGBM 

Parameter Value/Range Parameter Value/ 
Range 

Solver Saga bagging_freq 1 
Penalty Elasticnet learning_rate 0.05 
class_weight Balanced objective Binary 
max_iter ∞ metrics f1_score 
Tol {0.001, 0.003, 0.01, 

0.03} 
num_iterations ∞ 

C [0,001, 100] early_stopping_rounds 50 
l1_ratio [0, 1] scale_pos_weight [1,10]   

num_leaves [7,4095]   
max_depth [-1, 63]   
bagging_fraction [0.4, 1]   
colsample_bytree [0.4, 1]   
lambda_l1 [0,1]   
lambda_l2 [0,1]  
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This F1 score was calculated from a recall of 0.37 and precision of 0.27. 
Therefore only 37% of DNAs were successfully identified, and 27% of 
predicted DNAs were correct. Factor importance calculated using SHAP 
can be seen in Fig. 2(A) for the top 20 variables in terms of model 
importance. In the case of logistic regression, the results are somewhat 
misleading, for example looking at ‘DaysSinceLastDNA’, the logistic 
regression model finds a linear relationship with DNAs, but LightGBM 
shows that the true relationship is more complex (Fig. 2(B)). The in-
adequacy of logistic regression for predicting DNAs becomes even more 
evident in Fig. 3 which shows a linear relationship between the patient’s 
age and DNA rate, which exploratory data analysis has shown to be 
overly simplified and misleading. More in-depth results, such as factors 
by speciality and LHB, were not computed using logistic regression due 
to the poor performance and as discussed, the potential for misleading 
results. 

4.2. Using machine learning 

The results of the LightGBM model tested on the test set can be seen 
in Table 3, both for Wales overall and for the 7 Local Health Boards. The 
importance of the most important twenty factors, as calculated using 
SHAP values, can be found in Table 4. To illustrate the principles only 
the general case and three selected specialities are presented in this table 
but it is possible to extend this analysis to consider more specialities and 
this is returned to in the Discussion section of the paper as an avenue for 
further research. Nationally, the most important individual factors for a 
model trained and tested on all specialities were found to be the pa-
tient’s age, appointment history (attendance score and DNA score), 
treatment site, speciality, waiting time and Townsend Index. Age is a 
variable very commonly found amongst the other studies, and it was 
expected to be an important factor. The results for age are as expected: 
younger people miss more appointments. The other variables are more 
difficult to compare because they are either rare (appointment history, 
waiting time) or completely missing from the literature (Charlson Co-
morbidity Index). 

The subsequent models were trained and tested on distinct special-
ities and yielded better results for some specialities and worse for others, 

as shown for the 20 most populated specialities in Table 5. The fact that 
the ability to predict DNAs changes when the model is trained exclu-
sively on them, indicates that the specialities differ in the factors 
affecting their attendance. Specifically, for those specialities where the 
performance dropped, it suggests that attendance is affected by factors 
that are not present in the data. Furthermore, the factor importance 
charts in Fig. 4 and results in Table 4 reveal that the same factors can 
affect specialities differently, i.e. although the Townsend Index is an 
important factor in most specialities, the way that its variation affects 
attendance differs between specialities. 

For Fig. 4, in the general case (a), the SHAP value forms a positive 
linear relationship with the Townsend Index, thus implying that more 
deprived areas correlate with a higher DNA rate. Neither the linearity 
nor the strictly positive relationship holds on a speciality-by-speciality 
basis, with some having a drastically different shape. For example, 
Adult Mental Illness (b) presents a relatively flat curve with lower values 
being more impactful. While both Dermatology (c) and Neurology (d) 
show a positive relationship, Dermatology appears to approximate lo-
gistic growth, while Neurology looks logarithmic. For ‘Adult Mental 
Illness’ (AMI) and Cardiology, the best factor in predicting DNAs is the 
hospital where the appointment is scheduled. Differences in the other 
factors can also easily be observed. For the Clinical Haematology 
speciality, the most important factors were previous attendance history 
and age, followed by waiting time. In contrast, for the ‘Geriatric Medi-
cine’ speciality, the top three factors were: previous attendance history, 
treatment site, and ambulance score. Geriatric Medicine has the highest 
importance for ambulance score of any speciality, and one of the lowest 
for age, tied with Paediatrics. 

5. Discussion 

A key strength of this study is the availability of a rich source of 
national data, allowing a large-scale approach to the problem. This data 
was used to derive new statistics, such as the appointment history scores, 
which have proven to be very useful. While most studies focus on a 
single speciality, or a single hospital, this study has included records 
from every medical speciality for an entire country (Wales). This, 

Fig. 2. A comparison of factor importance for Wales.  
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combined with a sophisticated machine learning approach, has allowed 
key insights to be drawn on the differences between locations and spe-
cialities in terms of non-attendance. Results obtained through LightGBM 
show that the impact of contextual factors such as area-level deprivation 
on DNA rates is dependent on the speciality under consideration. Such 
an approach has real value in informing future targeted mechanisms, as 
it is shown that results vary by area and speciality. For example, for 
specialities where deprivation was found to be an important factor, in-
centives such as compensated bus tickets could be trialled. Special care 

should be afforded both to understanding why deprivation measures are 
more important for some specialities than others, and why in specialities 
where it is important, the relationship between DNA rates and depri-
vation is different. 

One very commonly used method to alleviate the effects of DNAs is 
overbooking, that is booking more slots than are available to capitalise 
on missed appointments and keep staff utilisation high. Arguments 
against overbooking have been made in several studies, with concerns 
mainly relating to patient satisfaction and the additional stress placed on 

Fig. 3. A comparison of the factor importance of Age for Wales.  

Table 3 
Performance metrics for LightGBM by Local Health Board.   

Overall 
(Wales) 

Betsi Cadwaladr 
University 

Cardiff and Vale 
University 

Cwm Taf Morgannwg 
University 

Hywel Dda 
University 

Powys 
Teaching 

Swansea Bay 
University 

Aneurin Bevan 
University 

F1 score 0.37 0.36 0.4 0.37 0.35 0.35 0.37 0.35 
Precision 0.33 0.28 0.29 0.3 0.29 0.31 0.31 0.31 
Recall 0.42 0.5 0.61 0.48 0.42 0.4 0.44 0.4  

Table 4 
Factor importance for Wales and selected specialities.  

All specialities Adult mental illness Dermatology Neurology 

Factor SHAP 
importance 

Factor SHAP 
importance 

Factor SHAP 
importance 

Factor SHAP 
importance 

Age 0.38 Treatment site 0.35 Age 0.51 Age 0.35 
DNA score 0.31 DNA score 0.27 Waiting time 0.29 DNA score 0.30 
Attendance score 0.26 Attendance score 0.20 Treatment site 0.27 Attendance score 0.29 
Treatment site 0.20 Age 0.16 Attendance score 0.24 Days since last DNA 0.23 
Days since last DNA 0.19 Days since last DNA 0.12 DNA score 0.21 Townsend Index at 

LSOA 
0.19 

Speciality 0.17 Waiting time 0.11 Days since last DNA 0.18 Waiting time 0.13 
Waiting time 0.16 Destination Health 

Board 
0.07 Townsend Index at 

LSOA 
0.14 Destination Health 

Board 
0.13 

Townsend Index at 
LSOA 

0.14 Day of year 0.06 Day of year 0.14 Day of year 0.10 

Day of year 0.09 Previous outcome 0.03 Days since last app 0.10 Treatment site 0.09 
Previous outcome 0.08 Days since last app 0.03 Previous outcome 0.09 Sex 0.08 
Ambulance score 0.07 Townsend Index at 

LSOA 
0.03 Cancel score 0.05 Drive distance 

(miles) 
0.08 

Cancel score 0.07 Source of referral 0.02 Day of week 0.04 Days since last app 0.07 
Charlson Comorbidity 

Index 
0.05 Local authority 0.02 Charlson Comorbidity 

Index 
0.04 Previous outcome 0.07 

New or follow-up 0.05 Cancel score 0.01 Ambulance score 0.04 Source of referral 0.06 
Source of referral 0.04 Origin Health Board 0.01 Drive distance (miles) 0.03 Day of week 0.06 
Sex 0.04 Priority 0.01 Local authority 0.02 Ambulance score 0.06 
Days since last app 0.03 Day of week 0.01 Priority 0.02 Local authority 0.05 
Day of week 0.02 Drive distance (miles) 0.00 Destination Health 

Board 
0.01 New or follow-up 0.05 

Priority 0.02 Ambulance score 0.00 Origin Health Board 0.01 Priority 0.03 
Origin Health Board 0.02 Charlson Comorbidity 

Index 
0.00 Sex 0.01 Origin Health Board 0.03  
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staff by this practice (Bech, 2005; Moore et al., 2001; Hamilton et al., 
1999). This research could be used to directly assess the proportion of 
appointments to be overbooked in each clinic, each day, and even the 
most appropriate times of day for overbooking. The impact of this sys-
tem, if used correctly, could vastly improve both the waiting times, 
increasing patient satisfaction, and minimise the occurrence of staff 
overtime due to excessive overbooking. 

The factors found to be relevant in predicting non-attendances match 

existing literature in some respects, with some of the most important 
ones overall being patient attendance history, waiting time, and age. 
Other factors that were found influential include: Townsend Index, day 
of the year, drive time and the Charlson Comorbidity Index of the pa-
tient. These factors can be grouped into three major categories: 
compositional (household and individual level), contextual (commu-
nity, OA level) and clinical (hospital, appointment). By summing the 
SHAP importance measure for these groups, it has been found that 
compositional factors account for most of the SHAP importance. The fact 
that the performance of the model dropped for some specialities when 
analysed on their own, shows that the current data does not model those 
specialities adequately. There must be other factors that influence the 
DNA rates for those specialities, which are not included in the data. 
Rheumatology is an example of such a speciality, where an F1 score of 
0.31 was reached. 

Performance varied by area as well, F1 score ranging from 0.4 to 
0.61. The results might be affected by the diversity of areas included in 
the dataset as reflected in their deprivation ranking. Another possible 
factor is data quality. For example, almost half (47%) of the cases where 
a waiting period could not be calculated due to the absence of a referral 
date, were in one LHB (CTM). The most import area factor, in general, 
was the Townsend Index. Other demographics failed to make a signifi-
cant impact. No difference was found between patients living in urban or 
rural areas. In the data collected, compositional factors were found to be 
more important than contextual factors, but deprivation was consis-
tently found to be in the top 10 most important factors, for every 
speciality. When looking at clinic-related variables, the most important 
factor is the medical speciality. The next most important is the source of 
referral, followed by days between when the appointment was reques-
ted, and the appointment was scheduled to take place. Hospital type was 

Table 5 
F1 scores by speciality for the 20 most populated specialities.  

Speciality F1 score 

Adult mental illness 0.46 
Cardiology 0.34 
Clinical Haematology 0.36 
Dermatology 0.38 
Endocrinology 0.46 
ENT 0.32 
Gastroenterology 0.37 
General medicine 0.51 
General surgery 0.33 
Geriatric medicine 0.44 
Gynaecology 0.32 
Neurology 0.42 
Obstetrics 0.33 
Ophtalmology 0.37 
Oral surgery 0.46 
Paediatrics 0.40 
Respiratory medicine 0.39 
Rheumatology 0.31 
Trauma and Orthopaedics 0.37 
Urology 0.33  

Fig. 4. A comparison of the factor importance of the Townsend Index by speciality for Wales.  
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found to be much more important than the exact hospital where the 
appointment was scheduled. 

A comparison of different deprivation measures was also performed, 
with the result that the Townsend Index generally outperforms the 
WIMD, with some exceptions such as Paediatrics and Child and 
Adolescent Psychiatry. These differences can be a result of the different 
domains that form the two deprivation measures. WIMD is a more 
complex measure formed from indices grouped into domains. A limita-
tion of the study is the absence of other variables which could be 
influencing DNA rates; particularly the compositional variables such as 
minority status, religion, etc. Future research will aim to improve on the 
ability to predict DNAs by including new data and improve the model by 
including factors such as weather conditions, unusual events or the 
physical location of hospitals. This should help inform different types of 
interventions aimed at increasing patient attendance in different 
regional contexts and for a range of medical specialities. 

For brevity, only the results of a few key specialities are illustrated 
here; future research could involve a wider investigation that includes a 
consideration of more specialities as part of a fuller exploration of fac-
tors leading to DNAs. Further research will also include a study on the 
most efficient reminders for the patient groups identified in this paper, 
focusing on those considered at higher risk of non-attendance. Initial 
hypotheses are that electronic reminders would achieve a better 
response with groups belonging to the younger demographic, or those 
living in urban areas, while traditional forms of contact might work best 
for the older individuals or those living in rural areas. However, more 
research is needed to explore the potential for alternative intervention 
policies in these contexts. The dataset includes no individual-level in-
formation on the patients’ ethnic background, religiosity, socioeco-
nomic status, employment status, disability status, education level, car 
ownership, and history of mental illness, all of which have been shown 
in some previous studies to have a measurable impact on non- 
attendance rates (Dantas et al., 2018). While there is data on patients’ 
ethnic origin in the National Database at NWIS, it is very sparse with 
two-thirds of the records being ‘Not stated’. As such, it was not included 
in the analysis. Although census data was used as a proxy for many of 
these factors, the deprivation rank is based on 2011 Census data (Office 
for National Statistics, 2011) complimented by more up-to-date 2014 
data that includes a wider range of data sources; thus, it may not be 
completely representative of the current situation. While the newest 
WIMD edition had already been released in late 2019, it was not 
considered for this study because of a change in methodology whose 
impact has not yet been evaluated on our dataset. Finally, in this study 
we have used advanced quantitative methods involving the analysis of a 
national database; deeper insights could be gained by collecting primary 
data and by incorporating qualitative approaches to investigate the 
perceived reasons for non-attendance, both among staff and patients, in 
contrasting geographical or socioeconomic contexts. 

6. Conclusions 

Missed appointments continue to cost health organisations in many 
countries a considerable amount of money and may have detrimental 
social and health implications for individual patients. The main contri-
bution of the paper is that it provides a greater understanding of the 
underlying reasons and influences on patterns of DNAs that have often 
been beyond the scope of previous studies. The results from this analysis 
can help inform the use of various policy interventions aimed at 
increasing the attendance rate. In particular, the study builds on an 
expanding literature on the advantages of machine learning approaches 
in healthcare (discussed in Section 2.2) and draws on the increasing 
amount of data becoming available through data-sharing initiatives in 
the health sector. To the best of our knowledge, this is the first study to 
use these particular machine learning techniques in an outpatient 
appointment context. The choice of model allows for highly non-linear 
relationships to be discovered between variables and highlights the 

limitations of common classical approaches. 
It has been shown that there are differences in those factors associ-

ated with missing outpatient appointments for different medical speci-
alities which will have important implications for informing 
interventions developed on a speciality-by-speciality basis. An impor-
tant addition of this study has been the analysis of both contextual and 
compositional factors potentially associated with DNA rates. Wider 
contextual variables are often omitted from studies concerned with 
establishing those factors associated with non-attendance. Our findings 
have shown that whilst for some specialities, such rates are influenced 
predominantly by compositional factors, others are affected more by 
contextual or clinical factors worthy of further investigation in follow-up 
research. In particular, geographical variations highlighted in the 
analysis suggest that further research could look to enhance the dataset 
by examining the influence of variables such as weather incidence, local 
transport conditions or the impact of other significant events at the 
scheduled appointment time and place. 
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Junod Perron, N., Dominicé Dao, M., Kossovsky, M.P., Miserez, V., Chuard, C., Calmy, A., 
Gaspoz, J.-M., 2010. Reduction of missed appointments at an urban primary care 
clinic: a randomised controlled study. BMC Fam. Pract. 11, 79. 

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y., 2017. 
LightGBM: a highly efficient gradient boosting decision tree. Advances in Neural 
Information Processing Systems 30. NIPS 2017, 3 February 2020. https://papers. 
nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree. 

Kearns, M., Valiant, L.G., 1989. Cryptographic limitations on learning boolean formulae 
and finite automata. In: Proceedings of the Twenty-First Annual ACM Symposium on 
Theory of Computing, STOC ’89. ACM, pp. 433–444. https://doi.org/10.1145/ 
73007.73049. New York, NY, USA, 3 February 2020.  

Kheirkhah, P., Feng, Q., Travis, L.M., Tavakoli-Tabasi, S., Sharafkhaneh, A., 2016. 
Prevalence, predictors and economic consequences of no-shows. BMC Health Serv. 
Res. 16, 13. 

Koh, H.C., Tan, G., 2005. Data mining applications in healthcare. J. Healthc. Inf. Manag. 
19 (2), 64–72. 

Kruse, G.R., Rohland, B.M., Wu, X., 2002. Factors associated with missed first 
appointments at a psychiatric clinic. Psychiatr. Serv. 53 (9), 1173–1176. 

Lehmann, T.N.O., Aebi, A., Lehmann, D., Balandraux Olivet, M., Stalder, H., 2007. 
Missed appointments at a Swiss university outpatient clinic. Publ. Health 121 (10), 
790–799. 

Loh, W.-Y., 2014. Fifty years of classification and regression trees: fifty years of 
classification and regression trees. Int. Stat. Rev. 82 (3), 329–348. 

Ma, X., Sha, J., Wang, D., Yu, Y., Yang, Q., Niu, X., 2018. Study on a prediction of P2P 
network loan default based on the machine learning LightGBM and XGboost 

algorithms according to different high dimensional data cleaning. Electron. Commer. 
Res. Appl. 31, 24–39. 

McCarthy, K., McGee, H.M., O’Boyle, C.A., 2000. Outpatient clinic waiting times and 
non-attendance as indicators of quality. Psychol. Health Med. 5 (3), 287–293. 

Mohamed, K., Mustafa, A., Tahtamouni, S., Taha, E., Hassan, R., 2016. A quality 
improvement project to reduce the ‘No show’ rate in a paediatric Neurology clinic. 
BMJ Open 5, u209266 w3789.  

Moore, C.G., Wilson-Witherspoon, P., Probst, J.C., 2001. Time and money: effects of no- 
shows at a family practice residency clinic. Family Medicine-Kansas City 33 (7), 
522–527. 

Mozaffari-Kermani, M., Sur-Kolay, S., Raghunathan, A., Jha, N.K., 2015. Systematic 
poisoning attacks on and defenses for machine learning in healthcare. IEEE Journal 
of Biomedical and Health Informatics 19 (6), 1893–1905. 

Muhammad, U.K., Choi, J.P., Shin, H., Kin, M., 2008. Predicting breast cancer 
survivability using fuzzy decision trees for personalized healthcare. In: 30th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society, 
IEEE Engineering in Medicine and Biology Society. IEEE, Vancouver, BC, 
pp. 5148–5151. 

Nel, D.Y.M., 2014. Factors Associated with Attendance at First Clinic Appointment in 
HIV Positive Psychiatric Patients Initiated on Antiretroviral Therapy (ART) as In- 
Patients. Thesis M.Med. Psychiatry)-University of the Witwatersrand, Faculty of 
Health Sciences, 2014.  

Nelson, A., Herron, D., Rees, G., Nachev, P., 2019. Predicting scheduled hospital 
attendance with artificial intelligence. Digital Medicine 2, 1–7. 

NHS England, 2018. NHS to trial tech to cut missed appointments and save up to £20 
million, 3 February 2020. https://www.england.nhs.uk/2018/10/nhs-to-trial-tech- 
to-cut-missed-appointments-and-save-up-to-20-million/. 

Nicholson, I.R., 1994. Factors involved in failure to keep initial appointments with 
mental health professionals. Psychiatr. Serv. 45 (3), 276–278. 

Norris, J.B., Kumar, C., Chand, S., Moskowitz, H., Shade, S.A., Willis, D.R., 2014. An 
empirical investigation into factors affecting patient cancellations and no-shows at 
outpatient clinics. Decis. Support Syst. 57, 428–443. 

Office for National Statistics, 2011. 2011 Census: Population and Household Estimates 
for Small Areas in England and Wales, March 2011, 3 February 2020. https://www. 
ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populatione 
stimates/bulletins/2011censuspopulationandhouseholdestimatesforsmallarea 
sinenglandandwales/2012-11-23. 

Obenshain, M.K., 2004. Application of data mining techniques to healthcare data. Infect. 
Contr. Hosp. Epidemiol. 25 (8), 690–695. 

Schapire, R.E., 1990. The strength of weak learnability. Mach. Learn. 5, 197–227. 
Sharp, D.J., Hamilton, W., 2001. Non-attendance at general practices and outpatient 

clinics: local systems are needed to address local problems. Br. Med. J. 323, 
1081–1082. 

Sparr, L.F., Moffitt, M.C., Ward, M.F., 1993. Missed psychiatric appointments: who 
returns and who stays away. Am. J. Psychiatr. 150, 801–805. 

Stone, C.A., Palmer, J.H., Saxby, P.J., Devaraj, V.S., 1999. Reducing non-attendance at 
outpatient clinics. J. R. Soc. Med. 92 (3), 114–118. 

Stowell, D., Giannoulis, D., Benetos, E., Lagrange, M., Plumbley, M.D., 2015. Detection 
and classification of acoustic scenes and events. IEEE Trans. Multimed. 17 (10), 
1733–1746. 

Stubbs, N.D., Sanders, S., Jones, D.B., Geraci, S.A., Stephenson, P.L., 2012. Methods to 
reduce outpatient non-attendance. Am. J. Med. Sci. 344 (3), 211–219. 

Sun, X., Liu, M., Sima, Z., 2020. A novel cryptocurrency price trend forecasting model 
based on LightGBM. Finance Res. Lett. 32, 101084. 

Townsend, P., 1988. Health and deprivation. In: Townsend, P., Phillimore, P., Beattie, A. 
(Eds.), Inequality and the North. Croom Helm Ltd, London, p. 221. 

Wang, G., Liu, Z., 2020. Android malware detection model based on LightGBM. In: 
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